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We study the dynamic stabilities of unidirectionally coupled linear arrays of chaotic oscillators with time-
delay feedbacks in star configuration, and find that if all oscillators in the network are identical, then the
oscillators in the linear arrays can anticipate the driving oscillators, and simultaneously the oscillators in the
linear arrays with the same position with respect to the central one are in synchronous chaotic state. Compared
with the anticipated synchronization, the layered synchronization is first generated and last destroyed as the
coupling constant is increased. This coexistence of anticipated and layered chaotic synchronization is destroyed
by long time feedback. If the driving and driven oscillators are different, then only layered chaotic synchro-
nization is possible.
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Chaos synchronization �1� is a universal phenomenon in
nature and science and has been intensively studied in a va-
riety of coupled physical, chemical, biological, and social
systems �2�. Due to the finite propagation speed and memory
effects, the chaotic synchronization in time-delay systems
has attracted much attention recently. Retarded �3,4�, com-
plete �3–5�, and anticipated �3,6–8� chaos synchronization
are three interesting phenomena in such systems. In these
studies, two main coupling schemes are used, the first
scheme is that one oscillator x j�t� is coupled to other oscil-
lator x j−1�t� by the term k�x j−1�t−��−x j�t��, and which can
generate long-time anticipation of chaotic states in certain
coupling configuration �3�. In the second scheme, the cou-
pling term is k�x j−1�t�−x j�t��−k�x j�t−��−x j�t��=k�x j−1�t�
−x j�t−���, and which can generate very short anticipation
time �6� due to the limited memory time of the system. This
“memory” caused time-delayed feedback is an inherent char-
acter of dynamic systems, and whose effects on the chaotic
synchronization exist in many dynamic systems. Careful
analysis shows that in the unidirectionally time-delay
coupled excitable systems, the conditions for anticipating
synchronization are that the excitability threshold for the
slave should be lower than that of the master and that the
maximum memory delay time should be shorter than the
response time of the master �9�.

In this Brief Report, we study the memory effects on the
chaotic synchronization in the network of star configuration
�10� in which one chaotic oscillator drives multiple unidirec-
tionally coupled linear arrays of chaotic oscillators. Such a
network is of great interest because �i� both the anticipated
and layered chaotic synchronization can coexist in the star
network, and �ii� the star network can be found in many
fields, such as the hierachical and layered structures in na-
ture, science, and social organizations. The star network we
consider is shown in Fig. 1 and the dynamic equation for this
system is given by

ẋij = F�uij,xij� + �1 − � j0�Cij�xij−1 − xij�t − �ij�� , �1�

where i=1, . . . ,M is the ith linear index, and j=0, . . . ,N is
the jth oscillator index in the linear arrays. The individual

oscillator �i , j� with the memory time �ij is described by the
vector dynamic equation ẋij = �ẋij

1 , ẋij
2 , . . . , ẋij

m�T

= �F1 ,F2 , . . . ,Fm�T with the dynamic parameters uij, and �ij

is the Kronecker � function. Cij denotes the coupling matrix.
If �uij ,Cij ,�ij�= �ui�j ,Ci�j ,�i�j� are different for different j
�the jth layer�, then only layered chaotic synchronization
�LCS� exists. The jth layered synchronization manifold is
given by xij�t�=xi�j�t�, and the transversal state equation for
�ii�j�t�=xij�t�−xi�j�t� is given by

�̇ii�j�t� = F�uij,xij� − F�uij,xi�j� + �1 − � j0�Cij��ii�j−1�t�

− �ii�j�t − �ij��

= �g�uij,xij���ij0
� j−1j + �1 − � j0�Cij���ij0

− � j−1j��

��ii�j−1�t − �ij� . �2�

FIG. 1. Architecture of the star configuration.
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Here � j−1j�ii�j−1=�ii�j. It is obvious that the manifolds are
stable if �ii�j�t−�ij�=0, and �ii�j−1�t�=0, which give xij�t�
=xi�j�t�, and xij−1�t�=xi�j−1�t�. While if all oscillators are
identical in this network, that is �uij ,Cij ,�ij�= �u ,C ,��, we
can also obtain the anticipated chaotic synchronization
�ACS� xij�t�=xij��t− l���l= j�− j�. The stabilities of these
manifolds are described by the transversal equations for
�ij j��t�=xij�t�−xij��t− l��

�̇ij j��t� = F�u,xij� − F�u,xij��t − l��� + C��1 − � j0��ij−1j�−1�t�

− �ij j��t − ���

= �h�u,xij���0� j−1j� j�−1j� + C��1 − � j0���0

− � j−1j� j�−1j����ij−1j�−1�t − �� . �3�

The anticipatory synchronization manifolds of the system
are stable if �ij j��t�=0, �ij−1j�−1�t�=0, and �ij j��t−��=0.
This yields the anticipation time t= l� �l= j�− j=1,2 , . . . �.

In order to discuss the coexistence of the layered and
anticipated chaotic synchronization, we, based on Eqs.
�1�–�3�, calculate the maximum transversal Lyapunov
exponent �MTLE� for the coupled Lorenz oscillator
system: ẋij = �ẋij , ẏij , żij�T=F�uij ,xij�= ��ij�yij −xij� ,Rijxij −yij

−xijzij ,−bzij +xijyij�T. Equation �2� now becomes

�̇ii�j�t� = � − �ij �ij 0

Rij − zij�t� − 1 − xi�j�t�

yij�t� xi�j�t� − bij
��ii�j�t�

+ �1 − � j0�Cij��ii�j−1�t� − �ii�j�t − �ij�� , �4�

with the coupling matrix

Cij = �ijRijE = �ijRij�0 0 0

1 0 0

0 0 0
� , �5�

here 0��ij �1/M for j=1, and 0��ij �1 for j�2. uij
= ��ij ,Rij ,bij� are the dynamic parameters of the �i , j� Lorenz
oscillator, and are chosen in the chaotic region of the isolated
Lorenz oscillator. Similarly, Eq. �3� becomes

�̇ij j��t� = � − � � 0

R − zij�t� − 1 − xij��t − l��

yij��t − l�� xij�t� − b
��ij j��t�

+ �RE��1 − � j0��ij−1j�−1�t� − �ij j��t − ��� . �6�

To study the stabilities of the anticipated and layered syn-
chronous states of the coupled identical Lorenz oscillator
system, we numerically compute the MTLE’s 	ii�j

� of the
layered synchronization manifolds, and 	ij j�

� of the antici-
pated synchronization manifolds by simulating Eqs. �1�, �4�,
and �6� under the boundary conditions �ii�0�t�=0, �i00�t�
=0, and using the following equations:

	ii�j
� = lim

T→


1

T
ln	�ii�j�T�

�ii�j�0� 	 , �7�

	ij j�
� = lim

T→


1

T
ln	�ij j��T�

�ij j��0� 	 . �8�

The necessary condition for the synchronization manifold
to be stable is that the MTLE 	� in Eqs. �7� and �8� is
negative. For simplicity and without loss of generality, we
focus on the anticipatory synchronization manifold xi0�t�
=xi1�t−��, and the layered synchronization manifold xi1�t�
=xi�1�t� �the first layer�. The conclusions obtained below are
similar for other manifolds �j , j��1�. Figure 2 shows the
numerical results of the MTLE for ��ij ,Rij ,bij�= �� ,R ,b�
= �20,35,2.5�, and different � and �. We see that both 	ii�1

�

and 	i01
� increase from negative values to positive values as �

is increased from zero, that is the long memory time � can
completely destroy the chaotic synchronization. Figure 3 dis-
plays the MTLE’s of both the ACS and the LCS in ��−��
parameter space. It is interesting to note that the memory
time � affects not only the stability of the ACS, but also the

FIG. 2. �a� The MTLE’s 	ii�1
� �thin black lines� and 	i01

� �bold
gray lines� for different � and �. �b� The amplification of the MTLE
in the square in �a�. The dynamic parameters are chosen as
��i0 ,Ri0 ,bi0�= ��i1 ,Ri1 ,bi1�= �20,35,2.5�. Dimensionless units are
used.
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stability of the LCS. This leads to the conclusion that the
structure symmetry of the network does not ensure the LCS
�10�. Another point to be stressed is that, compared with the
ACS, the LCS is first generated and last destroyed as � is
increased, and the LCS can exist in larger ��−�� parameter
space �see Fig. 3�. Figures 2 and 3 also show that in general
the strong coupling cannot ensure both the ACS and the
LCS. Since the MTLE 	� is a self-averaging quantity, it is
possible that the MTLE 	� is positive in some parts of the
attractor, though negative in average. For example, the inter-
mittent chaotic synchronization can take place for 	��0
near the critical dynamic parameters ��c ,�c� which separate

the 	��0 region and 	�0 region in Fig. 3. However, the
chaotic synchronization manifold is stable for 	�0 in our
case, we have checked this conclusion by calculating the
time series xi0�t�, xi1�t�, and the difference xi1�t�−xi�1�t� for
different � and �. We depict several time series in Fig. 4 to
demonstrate the ACS and the LCS.

Augmenting the linear arrays cannot affect the above con-
clusions. The effect is that the unsynchronous transient time
tu�s ��ii�j�t�=0, or �ij j��t�=0 for t� tu� of both the ACS and
the LCS increase with increasing the number j of chaotic
oscillators in the linear arrays. The reason for this is that the
unsynchronous signal �ii�j−1�t� ��ij−1j�−1�t�� of the �j−1�th
layer enters the jth layer resulting in the state of the jth layer
being less stable than that of the �j−1�th layer. Another ef-

FIG. 3. The MTLE’s in ��−�� parameter space, in which the
black region denotes 	i01

� 0, the gray region denotes 	ii�1
�

0, and
the white region denotes all MTLE’s are positive. The dynamic
parameters are the same as that in Fig. 2. Dimensionless units are
used.

FIG. 4. �a� The time series of xi0 �black lines� and xi1 �gray
lines� for different �, which show the ACS and the disappearing of
ACS. �b� The difference xi1−xi�1 for different � as that in �a�, which
give the evidence of LCS. The coupling constant �=0.5, other pa-
rameters are the same as that in Fig. 2. Dimensionless units are
used.

FIG. 5. The unsynchronous transient time tu of both ACS �solid
lines� and LCS �dashed lines� for different oscillator j in the linear
arrays and different �. Here �=1.0, the other dynamic parameters
are the same as that in Fig. 2. Dimensionless units are used.

FIG. 6. The MTLE 	ii�1
� in ��−�� parameter space. The black

region denotes 	ii�1
�

0, while the white region denotes 	ii�1
�

�0.
Here ��i0 ,Ri0 ,bi0�= �10,28,8 /3�, and ��i1 ,Ri1 ,bi1�= �20,35,2.5�.
Dimensionless units are used.
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fect is that the ACS will become unstable after some oscil-
lator j0
�tc /� in the linear arrays, here tc
0.8 is the char-
acteristic time of the Lorenz oscillator, and ��10−1, which
gives j0
16 for �=0.003 and j0
11 for �=0.009. The case
will change if we inhibit the transient unsynchronization in
the calculation �6�. Figure 5 shows the numerical results for
different oscillator j, and memory time �. The similar situa-
tion occurs for other parameters � and �. Since both the ACS
and the LCS become less stable for larger memory time �,
thus the slope of the tu curves increases with increasing �,
but there is no specific relation between � and the slope. It
should be pointed out that all Lorenz oscillators are in com-
plete chaotic states for �=0.

We have studied the effects of memory on the LCS in star
configuration with different chaotic Lorenz oscillators from
layer to layer. As an example, we numerically calculate
the MTLE 	ii�1

� for ��i0 ,Ri0 ,bi0�= �10,28,8 /3�, and

��i1 ,Ri1 ,bi1�= ��i�1 ,Ri�1 ,bi�1�= �20,35,2.5�, the results �Fig.
6� show the similar phenomena as that of the globally iden-
tical oscillator system �Fig. 3�.

In conclusion, we have shown numerically that both the
ACS and the LCS can coexist in star configuration with
time-delayed feedback. The memory of the system can de-
stroy both the ACS and the LCS. Stability analysis shows
that, in contrast to the ACS, the LCS first appears and last
disappears as the coupling strength � increases. For long
linear arrays the unsynchronous transient time of both the
ACS and the LCS increase with increasing the number of
chaotic oscillators in the linear arrays. One interesting topic
for future study would be the physics of the memory effects
on the ACS and the LCS, which will be given elsewhere.

We acknowledge the NSF of Jiangsu Province �No.
BK2005062�.
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